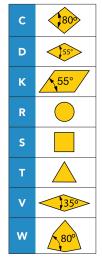
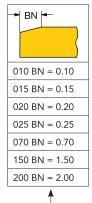


CONTENTS

OVERVIEW4	NBC – PCBN CORNERED INSERTS 19
TECHNICAL INFORMATION 6	NBS – PCBN SOLID INSERTS 24
NBT – PCBN TIPPED INSERTS 12	PCD TIPPED INSERTS 30




CODE KEY

C N M A 12 04 08 5 02

INSERT SHAPE

CHAMFER WIDTH

CHAMFER ANGLE

WIPER GEOMETRY

Wiper geometry for general purpose machining Allows high feed rates in HPT Suitable for finish machining of GCI Wiper geometry optimized for HPT Low cutting forces for superior surface finish Designed for peak performance at HPT finishing feed rates		
optimized for HPT Low cutting forces for superior surface finish Designed for peak performance at HPT finishing feed	wg	for general purpose machining Allows high feed rates in HPT Suitable for finish
	WH	optimized for HPT Low cutting forces for superior surface finish Designed for peak performance at HPT finishing feed

C N M A 12 04 08 S 02 15

ISO TURNING INSERT CODES

EDGE PREPARATION CHAMFER WIDTH ANGLE

SEE PAGE 8 SEE PAGE 9

NICHE INSERT ICONS

_	Refers to a Negative Insert
+	Refers to a Positive Insert

GRADES

NBT TYPE	PCBN INSERTS	C	ontinues (Cut 🔵 Light Inte	errupted 🌑 🛮 Heavy Int	errupted 🏶
Grade	Application	Application		Work Piece	m/min.	Features
NB7510	Finish/Semi-finish	00	Y/N	Cast Iron	600-1200	↑
ND7F20	Finish/Constitute	. 4	V/N	Cast Iron	600-1200	
NB7520	Finish/Semi-finish	• •	Y/N	PM	100-300	WEAR
NB7530	Semi-finish/Rough	• •	M PM		100-300	WEAR RESISTANCE
NB9540	Finish/Semi-finish		Y/N	Hardened Steel	180-300	TANCE
NB9550	Finish/Semi-finish	00	Y/N	Carburized Steel	100-175	
NB9560	Semi-finish/Rough	0#	N	Carburized Steel	100-200	

NBC/NBS TYPE PCBN INSERTS

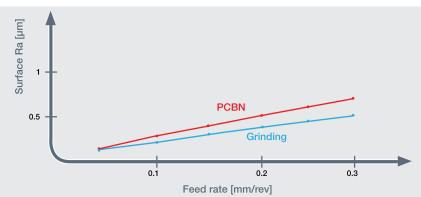
Grade	Application		Coolant	Work Piece	m/min.	Features
ND7000	Finish /Comit finish		A.	Cast Iron	400-1000	↑
NB7000	Finish/Semi-finish	N		Hardened Steel	90-140	- WE
NB7200	Finish		Y/N	Cast Iron	100-1200	WEAR RESISTANCE
ND7/00	F: .:. . G : G : .	00	A.	Cast Iron	400-1000	SISTAN
NB7600	Finish/Semi-finish		N	Hardened Steel	25-80]
NB9500	Finish/Semi-finish	00	Y/N	Hardened Steel	100-150	

W	FV	2	NBT	C	9550
WIPER	CHIP BREAKER	NO. OF CUTTING EDGES	CBN TYPE	COATING	GRADE
			NBT Tipped PCBN	Default Uncoated	
			NBC Cornered PCBN	C With coating	
			NBS Solid PCBN		

PCBN is a synthesis of CBN powder and special binder under ultra-high pressure and high temperature conditions. PCBN has high hardness, high thermal stability and high chemical inertness. Best suited to machining in hardened steel with hardness above HRC45 (eg carbon tool steel, bearing steel and die steel), gray cast iron, high hardness cast iron, Ni-based, Cobased, and Fe-based superalloy.

GRINDING VS. HARD TURNING

An important advantage in using PCBN inserts is that they can replace the slow and expensive grinding operations of hardened parts. Turning with PCBN inserts significantly reduces the cost per part when compared to grinding.


GRINDING

- Size tolerance specifications beyond the capability of turning
- Surface finish requirements too tight for hard turning

HARD TURNING

- Size tolerance specifications beyond the capability of turning
- Complex geometry makes single-point turning practical
- High metal removal rates
- Dry machining
- Faster machine setup
- Faster cycle times
- I.D. & O.D. machining on one machine

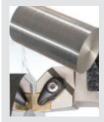
COMPONENT CLAMPING

Wide clamping jaws have more benefits compared to ordinary three point jaws. Thin walled components require extremely secure clamping. The component should be as close

as possible to the spindle bearings. As a general guideline, a length-to-diameter ratio of 2:1 is recommended for work-pieces supported on one end only, with acceptable

maximum of 4:1. Where there is additional tailstock support, the ratio can be extended to 8:1.

Correct alignment of the headstock and tailstock also adds to the rigidity of the setup.


CARBIDE INSERTS ARE NOT SUITABLE FOR HPT

It's not advisable to use carbide inserts for hard part turning due to low chemical stability between carbide and the hard materials. The high pressure and high temperatures generated during HPT cause rapid wear and short tool life for the carbide insert.

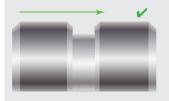
HARD PART TURNING (HPT)

Hard part turning (HPT) applications are similar to standard turning applications: Continuous machining, Light interrupted cut, and a combination of continuous machining and light interrupted cut applications

- PCBN possesses high thermal conductivity with chemical stability at very high temperatures.
- Machining of hardened materials at high cutting parameters.
- PCBN's massive wear resistance ensures extended tool life, maintain dimensional tolerances and superior surface finish.
- The demand is growing exponentially as the use of hardened materials rises throughout the automotive, bearing, and die & mold industries.

CONTINUOUS & INTERRUPTED CUT

INTERRUPTED CUT


DESIGN AND PREPARATION

By carefully preparing the component in its soft (unhardened) state will be beneficial in the hard part turning process. Due to the small depths of cut used in hard part turning,

tight dimensional tolerances in soft machining are key to achieving a consistent process. This delivers longer tool life and high quality components. The use of features

such as chamfers and radii on the component will optimise entry and exit paths for maximum tool life. Points to remember when planning your soft machining conditions:

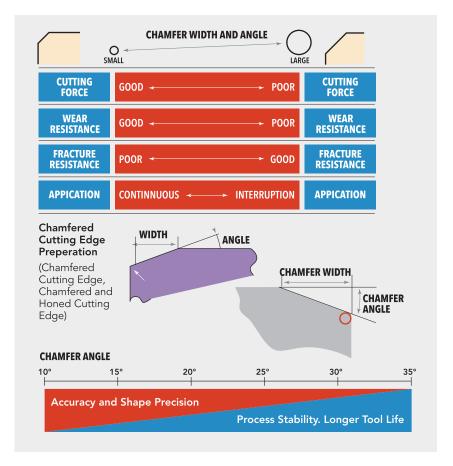
- Avoid burrs
 Keep along
- Keep close dimensional tolerances
- Chamfer and make radii in the soft state
- Do not enter or leave cut abruptly
- Enter or leave by programming radius movements

EDGE PREPARATION

Code	Description		Example	Features			
F	Sharp F		Sharp Edge SHARP EDGE	 Generally not recommended on PCBN since the sharp edge can chip or break quickly A sharp edge can be used when cutting forces need to be reduced due to unstable workpiece clamping or machine limitations" 			
E	Honed	E003	R0.003" Honed HONED CUTTING EDGE	Recommended for HRSA finishing operations Honing helps strengthen the edge, giving resistance to chipping and fracturing Feed rates must be greater than the hone size to allow actual cutting action to take place and prevent rubbing			
T	Chamfered	T02015	0.2X15° Chamfered	T-land is a common edge preparation for CBN Preferred choice for cast iron Good alternative to S-land in hard part turning when reduced cutting forces and tighter tolerances are required"			
S	Chamfered + Honed	S02025	0.2X25° Chamfered + Honed 0.2 25° HONED	First choice for hard part turning Stronger edge than T-land, with more resistance to chipping and fracture, resulting in more predictable tool life Generates consistent surface finish Critical in interrupted cutting and when using large depth of cut Feed rate must be greater than hone size			

The combination of the nose radius and edge preparation has a significant influence on tool life, surface finish and integrity of the machined part. It is very important to select the chamfer size and edge condition best suited to your application.

FEATURES OF CHAMFER WIDTH P/, ANGLE


In general, the strength of the cutting edge on CBN inserts increases with increasing chamfer angle and width, but also results in increased cutting forces and temperature. A wide chamfer spreads the cutting forces over a larger area, which provides a more robust cutting edge, allowing for higher feed rates. Where process

stability and consistent tool life are the most important factors, the best solution will be obtained using a large chamfer. If surface finish and dimensional accuracy are the main requirements, a small chamfer will provide the best results. Cutting forces and temperature will be reduced and there will

be less vibration. In some cases, where surface finish is critical, a honed edge (E-land) can be beneficial, even though the tool life will be shorter.

Since hard part turning is usually employed as a finishing operation, it is necessary to find the optimum edge design which produces high

quality components

PCBN INSERTS

CUTTING STRATEGY

When deciding between a oneor a two cut strategy, these factors must be

- Machine capability
- What the most important process measures are.

ONE-CUT STRATEGY

With a high quality machine tool and a stable setup, a single cut can produce acceptable levels of surface quality and dimensional tolerance

TWO-CUT STRATEGY

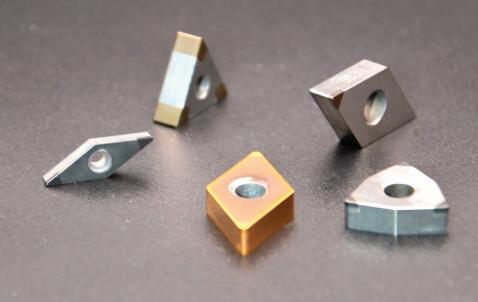
When the machine setup is unstable, if there is any inconsistency in the component or if a very high final tolerance or surface quality is required, a two-cut strategy is likely to be the best option.

TROUBLE SHOOTING

TOOL WEAR	SOLUTIONS
Flank wear	Increase cutting speed.Increase feed.
Crater wear	Reduce cutting speed. Increase feed.
Chipping	Check stability, eliminate vibration. Do not use coolant. Use a stronger cutting edge; - S-edge geometry - Increase chamfer size (angle and /or width) - Use larger nose radius.
Cracking /fracture	Use uncoated inserts. Check stability, eliminate vibration. Check/ replace shim. Make sure tool is aligned to centre. Do not use coolant. Decrease feed. Decrease depth of cut. Use a stronger cutting edge; - S-edge geometry Increase chamfer size (angle and /or width) - Use larger nose radius. Use wiper.
Notch wear	Increase speed. Reduce feed. Reduce/ vary depth of cut.

WET OR DRY MACHINING

Dry cutting is one of the key advantages of hard part turning, CBN inserts can tolerate cutting temperatures in excess of 1,000°C (1800°F). In general, the use of CBN in dry conditions has a positive effect on tool life, particularly in interrupted cutting.

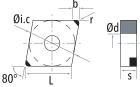

WHEN COOLANT IS REQUIRED:

- To facilitate chip breaking
- To control the thermal stability of the workpiece
- To remove heat when machining big components

Coolant must always be applied as a consistent flow over the entire cutting length.

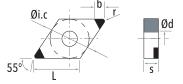
ELIMINATION OF COOLANT:

- Reduces costs
- Leads to easier chip handling
- Is more environmentally friendly


POR A BETTER US

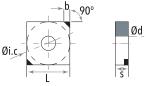
NBT PCBN TIPPED INSERTS

RHOMBIC 80°

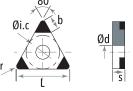


Туре		Dimensions (mm)							
ISO	L	φi.c	S	φd	r	b	Edge Preparation		
CNGA120402-2S	12	12,7	4,76	5,15	0,2	2,5			
CNGA120404-2S	12	12,7	4,76	5,15	0,4	2,5	T01020 T02020		
CNGA120408-2S	12	12,7	4,76	5,15	0,8	2,3	S01020 S02020		
CNGA120412-2S	12	12,7	4,76	5,15	1,2	2,3	302020		

RHOMBIC 55°

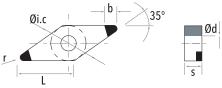

Туре		Edua Donous attack					
ISO	L	φi.c	S	φd	r	b	Edge Preparation
DNGA110402-2S	11	9,525	4,76	3,81	0,2	2,5	
DNGA110404-2S	11	9,525	4,76	3,81	0,4	2,5	
DNGA110408-2S	11	9,525	4,76	3,81	0,8	2,1	T01020
DNGA150402-2S	15	12,7	4,76	5,16	0,2	2,5	T02020 S01020
DNGA150404-2S	15	12,7	4,76	5,16	0,4	2,5	S02020
DNGA150408-2S	15	12,7	4,76	5,16	0,8	2,1	
DNGA150412-2S	15	12,7	4,76	5,16	1,2	1,8	

SQUARE



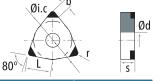
Туре		Dimensions (mm)							
ISO	L	φi.c	S	φd	r	b	Edge Preparation		
SNGA120402-2S	12	12,700	4,76	5,16	0,2	2,5			
SNGA120404-2S	12	12,7	4,76	5,16	0,4	2,5	T01020 T02020		
SNGA120408-2S	12	12,7	4,76	5,16	0,8	2,3	\$01020 \$02020		
SNGA120412-2S	12	12,7	4,76	5,16	1,2	2,3			

TRIANGULAR 60°


Туре			Edua Duanantian				
ISO	L	φi.c		φd	r	b	Edge Preparation
TNGA160402-3S	16	9,525	4,76	3,81	0,2	2,3	
TNGA160404-3S	16	9,525	4,76	3,81	0,4	2,3	T01020
TNGA160408-3S	16	9,525	4,76	3,81	0,8	2	T02020 S01020
TNGA160412-3S	16	9,525	4,76	3,81	1,2	1,7	S02020
TNGA160416-3S	16	9,525	4,76	3,81	1,6	1,5	

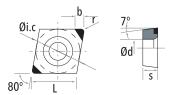
NBT PCBN TIPPED INSERTS

RHOMBIC 35°

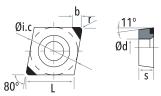


Туре			Edua Duanantian				
ISO	L	φi.c	S	φd	r	b	Edge Preparation
VNGA160402-2S	16	9,525	4,76	3,81	0,2	2,8	T01020
VNGA160404-2S	16	9,525	4,76	3,81	0,4	2,8	T02020 S01020
VNGA160408-2S	16	9,525	4,76	3,81	0,8	2	S02020
VNGA160412-2S	16	9,525	4,76	3,81	1,2	1,7	

TRIGON 80°

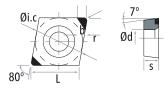

Туре				Edua Buranakian			
ISO	L	φi.c	S	φd	r	b	Edge Preparation
WNGA060402-3S	6	9,525	4,76	3,81	0,2	2,6	
WNGA060404-3S	6	9,525	4,76	3,81	0,4	2,5	
WNGA060408-3S	6	9,525	4,76	3,81	0,8	2,3	T01020
WNGA080402-3S	8	12,7	4,76	5,16	0,2	2,6	T02020 S01020
WNGA080404-3S	8	12,7	4,76	5,16	0,4	2,5	S02020
WNGA080408-3S	8	12,7	4,76	5,16	0,8	2,3	
WNGA080412-3S	8	12,7	4,76	5,16	1,2	2,2	

RHOMBIC 80°


Туре				Edua Duanantian			
ISO	L	φi.c	S	φd	r	b	Edge Preparation
CCGW060202-2S	6	6,35	2,38	2,8	0,2	1,9	
CCGW060204-2S	6	6,35	2,38	2,8	0,4	1,9	
CCGW060208-2S	6	6,35	2,38	2,8	0,8	1,7	
CCGW09T302-2S	9	9,525	3,97	4,4	0,2	2,5	T01020
CCGW09T304-2S	9	9,525	3,97	4,4	0,4	2,5	
CCGW09T308-2S	9	9,525	3,97	4,4	0,8	2,3	T02020 S01020
CCGW09T312-2S	9	9,525	3,97	4,4	1,2	2,2	S02020
CCGW120402-2S	12	12,7	4,76	5,5	0,2	2,5	
CCGW120404-2S	12	12,7	4,76	5,5	0,4	2,5	
CCGW120408-2S	12	12,7	4,76	5,5	0,8	2,3	
CCGW120412-2S	12	12,7	4,76	5,5	1,2	2,2	

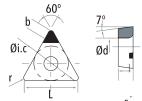
NBT PCBN TIPPED INSERTS

RHOMBIC 80°

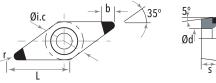


Туре				Edua Barrandian			
ISO	L	φi.c	S	φd	r	b	Edge Preparation
CPGW060202-2S	6	6,35	2,38	2,8	0,2	1,9	
CPGW060204-2S	6	6,35	2,38	2,8	0,4	1,9	
CPGW060208-2S	6	6,35	2,38	2,8	0,8	1,7	
CPGW090302-2S	9	9,525	3,18	4,4	0,2	2,5	
CPGW090304-2S	9	9,525	3,18	4,4	0,4	2,5	T01020
CPGW090308-2S	9	9,525	3,18	4,4	0,8	2,3	T02020 S01020
CPGW090312-2S	9	9,525	3,18	4,4	1,2	2,2	S02020
CPGW09T302-2S	9	9,525	3,97	4,4	0,2	2,5	
CPGW09T304-2S	9	9,525	3,97	4,4	0,4	2,5	
CPGW09T308-2S	9	9,525	3,97	4,4	0,8	2,3	
CPGW09T312-2S	9	9,525	3,97	4,4	1,2	2,2	

RHOMBIC 55°


Туре				Edua Duanavatian			
ISO	L	φi.c		φd	r	b	Edge Preparation
DCGW070202-2S	7	6,35	2,38	2,8	0,2	2,4	
DCGW070204-2S	7	6,35	2,38	2,8	0,4	2,4	
DCGW070208-2S	7	6,35	2,38	2,8	0,8	2	T01020 T02020
DCGW11T302-2S	11	9,525	3,97	4,4	0,2	2,4	S01020 S02020
DCGW11T304-2S	11	9,525	3,97	4,4	0,4	2,4	302020
DCGW11T308-2S	11	9,525	3,97	4,4	0,8	2	

TRIANGULAR 60°

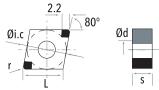

Туре			Dimensi	ons (mm)			S S
ISO	L	φi.c	S	φd	r	b	Edge Preparation
TCGW090202-3S	9	5,56	2,38	2,5	0,2	2,2	
TCGW090204-3S	9	5,56	2,38	2,5	0,4	2,1	
TCGW090208-3S	9	5,56	2,38	2,5	0,8	1,8	
TCGW110202-3S	11	6,35	2,38	2,8	0,2	2,2	
TCGW110204-3S	11	6,35	2,38	2,8	0,4	2,1	
TCGW110208-3S	11	6,35	2,38	2,8	0,8	1,8	T01020
TCGW110302-3S	11	6,35	3,18	2,8	0,2	2,2	T02020 S01020
TCGW110304-3S	11	6,35	3,18	2,8	0,4	2,1	S02020
TCGW110308-3S	11	6,35	3,18	2,8	0,8	1,8	
TCGW16T302-3S	16	9,525	3,97	4,4	0,2	2,2	
TCGW16T304-3S	16	9,525	3,97	4,4	0,4	2,1	
TCGW16T308-3S	16	9,525	3,97	4,4	0,8	1,8	
TCGW16T312-3S	16	9,525	3,97	4,4	1,2	1,5	

NBT PCBN TIPPED INSERTS

RHOMBIC 35°

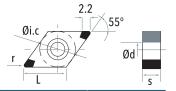
Туре				Edua Duamentian			
ISO	L	φi.c	S	φd	r	b	Edge Preparation
VBGW110302-2S	11	6,35	3,18	2,8	0,2	2,8	
VBGW110304-2S	11	6,35	3,18	2,8	0,4	2,8	
VBGW110308-2S	11	6,35	3,18	2,8	0,8	2,0	
VBGW110312-2S	11	6,35	3,18	2,8	1,2	1,7	T01020 T02020
VBGW160402-2S	16	9,525	4,76	4,4	0,2	2,8	S01020 S02020
VBGW160404-2S	16	9,525	4,76	4,4	0,4	2,8	. 302020
VBGW160408-2S	16	9,525	4,76	4,4	0,8	2,0	
VBGW160412-2S	16	9,525	4,76	4,4	1,2	1,7	

RHOMBIC 35°



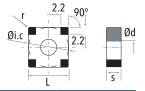
Туре				E.L. D			
ISO	L	φi.c	S	φd	r	b	Edge Preparation
VCGW110302-2S	11	6,35	3,18	2,8	0,2	2,8	
VCGW110304-2S	11	6,35	3,18	2,8	0,4	2,8	
VCGW110308-2S	11	6,35	3,18	2,8	0,8	2,0	
VCGW110312-2S	11	6,35	3,18	2,8	1,2	1,7	T01020 T02020
VCGW160402-2S	16	9,525	4,76	4,4	0,2	2,8	S01020 S02020
VCGW160404-2S	16	9,525	4,76	4,4	0,4	2,8	. 302020
VCGW160408-2S	16	9,525	4,76	4,4	0,8	2,0	
VCGW160412-2S	16	9,525	4,76	4,4	1,2	1,7	

RHOMBIC 80°



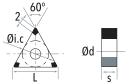
Туре		Dim	Ele Barrelle			
ISO	L	φi.c	S	φd	r	Edge Preparation
CNGA120404-4S	12	12,7	4,76	5,16	0,4	
CNGA120408-4S	12	12,7	4,76	5,16	0,8	
CNGA120412-4S	12	12,7	4,76	5,16	1,2	S01020
CNGA160404-4S	16	15,875	4,76	5,16	0,4	S02020
CNGA160408-4S	16	15,875	4,76	5,16	0,8	
CNGA160412-4S	16	15,875	4,76	5,16	1,2	

RHOMBIC 55°



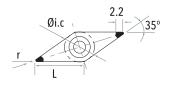
Туре		Din		Edua Duananatian		
ISO	L	φi.c	S	φd		Edge Preparation
DNGA110404-4S	11	9,525	4,76	3,81	0,4	
DNGA110408-4S	11	9,525	4,76	3,81	0,8	
DNGA110412-4S	11	9,525	4,76	3,81	1,2	S01020
DNGA150404-4S	15	12,7	4,76	5,16	0,4	S02020
DNGA150408-4S	15	12,7	4,76	5,16	0,8	
DNGA150412-4S	15	12,7	4,76	5,16	1,2	

SQUARE



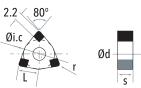
Туре		Edua Duanantian				
ISO	L	φi.c	S	φd	r	Edge Preparation
SNGA120404-8S	12	12,7	4,76	5,16	0,4	
SNGA120408-8S	12	12,7	4,76	5,16	0,8	S01020 S02020
SNGA120412-8S	12	12,7	4,76	5,16	1,2	302020

TRIANGULAR 60°



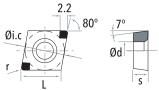
Туре		Din	Edua Duanavatian			
ISO	L	φi.c	S	φd	r	Edge Preparation
TNGA160404-6S	16	9,525	4,76	3,81	0,4	
TNGA160408-6S	16	9,525	4,76	3,81	0,8	
TNGA160412-6S	16	9,525	4,76	3,81	1,2	S01020
TNGA220404-6S	22	12,7	4,76	5,16	0,4	S02020
TNGA220408-6S	22	12,7	4,76	5,16	0,8	
TNGA220412-6S	22	12,7	4,76	5,16	1,2	

RHOMBIC 35°


Туре		Din	Edua Burnanskian			
ISO	L	φi.c	S	φd	r	Edge Preparation
VNGA160404-2S	16	9,525	4,76	3,81	0,4	
VNGA160408-2S	16	9,525	4,76	3,81	0,8	S01020 S02020
VNGA160412-2S	16	9,525	4,76	3,81	1,2	302020

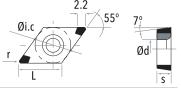


TRIGON 80°


Туре		Din	El B			
ISO	L	φi.c	S	φd	r	Edge Preparation
WNGA060404-6S	6	9,525	4,76	3,81	0,4	
WNGA060408-6S	6	9,525	4,76	3,81	0,8	-
WNGA060412-6S	6	9,525	4,76	3,81	1,2	S01020
WNGA080404-6S	8	12,7	4,76	5,16	0,4	S02020
WNGA080408-6S	8	12,7	4,76	5,16	0,8	
WNGA080412-6S	8	12,7	4,76	5,16	1,2	

NBC PCBN CORNERED INSERTS

RHOMBIC 80°

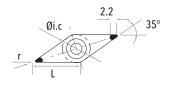


Туре		Din	Edua Barrandian			
ISO	L	φi.c	S	φd	r	Edge Preparation
CCGW09T304-2S	9	9,525	3,97	4,4	0,4	
CCGW09T308-2S	9	9,525	3,97	4,4	0,8	
CCGW09T312-2S	9	9,525	3,97	4,4	1,2	S01020
CCGW120404-2S	12	12,7	4,76	5,5	0,4	S02020
CCGW120408-2S	12	12,7	4,76	5,5	0,8	
CCGW120412-2S	12	12,7	4,76	5,5	1,2	

RHOMBIC 55°

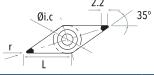
Туре		Dim	Edua Duranasian			
ISO	L	φi.c	S	φd		Edge Preparation
DCGW11T304-2S	11	9,525	3,97	4,4	0,4	
DCGW11T308-2S	11	9,525	3,97	4,4	0,8	S01020 S02020
DCGW11T312-2S	11	9,525	3,97	4,4	1,2	302020

TRIANGULAR 60°



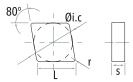
Туре		Edua Duanantian				
ISO	L	φi.c	S	φd	r	Edge Preparation
TCGW110304-3S	11	6,35	3,18	2,8	0,4	
TCGW110308-3S	11	6,35	3,18	2,8	0,8	S01020 S02020
TCGW110312-3S	11	6,35	3,18	2,8	1,2	302020

RHOMBIC 35°



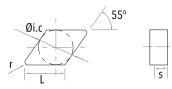
Туре		Din	Educ Burnanian			
ISO	L	φi.c	S	φd		Edge Preparation
VBGW160404-2S	16	9,525	4,76	4,4	0,4	
VBGW160408-2S	16	9,525	4,76	4,4	0,8	S01020 S02020
VBGW160412-2S	16	9,525	4,76	4,4	1,2	302020

RHOMBIC 35°

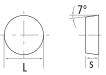

Туре		Din	Edua Duanantian			
ISO	L	φi.c	S	φd	r	Edge Preparation
VCGW160404-2S	16	9,525	4,76	4,4	0,4	
VCGW160408-2S	16	9,525	4,76	4,4	0,8	S01020 S02020
VCGW160412-2S	16	9,525	4,76	4,4	1,2	302020

NBS PCBN SOLID INSERTS

RHOMBIC 80°


Туре		Dimensi	ons (mm)		Edua Dunametian
ISO	L	φi.c	S	r	Edge Preparation
CNMN090404	9	9,525	4,76	0,4	
CNMN090408	9	9,525	4,76	0,8	
CNMN090412	9	9,525	4,76	1,2	
CNMN120404	12	12,7	4,76	0,4	
CNMN120408	12	12,7	4,76	0,8	
CNMN120412	12	12,7	4,76	1,2	
CNMN120704	12	12,7	7,94	0,4	
CNMN120708	12	12,7	7,94	0,8	S02020
CNMN120712	12	12,7	7,94	1,2	
CNMN120804	12	12,7	8	0,4	
CNMN120808	12	12,7	8	0,8	
CNMN120812	12	12,7	8	1,2	
CNMN160708	16	15,875	7,94	0,8	
CNMN160712	16	15,875	7,94	1,2	
CNMN160716	16	15,875	7,94	1,6	

RHOMBIC 55°

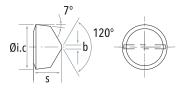


Туре		Dimensi	Edua Dunancian		
ISO	L	φi.c	S	r	Edge Preparation
DNUN110404	11	9,525	4,76	0,4	
DNUN110408	11	9,525	4,76	0,8	
DNUN110412	11	9,525	4,76	1,2	
DNUN110604	11	9,525	6,35	0,4	
DNUN110608	11	9,525	6,35	0,8	S01020 S02020
DNUN110612	11	9,525	6,35	1,2	302020
DNUN150604	15	12,7	6,35	0,4	
DNUN150608	15	12,7	6,35	0,8	
DNUN150612	15	12,7	6,35	1,2	

ROUND

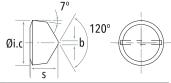
Туре		Dimensio	Edua Bararantian		
ISO	L	φi.c	S		Edge Preparation
RCMN 060400	6	6,35	4,76	-	
RCMN 090400	9	9,525	4,76	-	
RCMN 090600	9	9,525	6,35	-	S02020
RCMN 120600	12	12,7	6,35	-	S05020
RCMN 120700	12	12,7	7,94	-	S10020
RCMN 150700	15	15,875	7,94	-	
RCMN 190700	19	19,05	7,94	-	

SOLID WITH DIMPLE



Туре	Dimensions (mm)				Edge Drenevation	
ISO	L	φi.c	S		Edge Preparation	
RCMS090600	9	9,525	6,35			
RCMS120700	12	12,7	7,94		500000	
RCMS150700	15	15,875	7,94		S02020	
RCMS201000	20	20	10			

ROUND

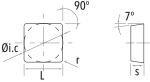


Туре		Dimensio	Ed. B.		
ISO	L	φi.c	S	r	Edge Preparation
RCMX 060400V	6	6,35	4,76	0,8	
RCMX 060600V	6	6,35	6,35	0,8	
RCMX 090700V	9	9,525	7,94	1	
RCMX 120700V	12	12,7	7,94	2	S02020 S05020
RCMX 151000V	15	15,875	10	2	S10020 S20020
RCMX 191000V	19	19,05	10	2	320020
RCMX 201200V	20	20	12	2	
RCMX 251200V	25	25,4	12	2	

ROUND

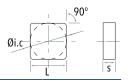
Туре	Dimensions (mm)				Edua Busuanskian
ISO	L	φi.c	S	r	Edge Preparation
RCMX060400Y	6	6,35	4,76	0,6	
RCMX060500Y	6	6,35	5	0,6	\$02020 \$05020 \$10020 \$20020
RCMX060700Y	6	6,35	7,94	0,6	
RCMX090700Y	9	9,525	7,94	1	
RCMX120700Y	12	12,7	7,94	1,2	

ROUND


Туре	Dimensions (mm)				Edna Dranavation
ISO	L	φi.c	S	r	Edge Preparation
RNMN060400	6	6,35	4,76	-	
RNMN090300	9	9,525	3,18	-	
RNMN090400	9	9,525	4,76	-	
RNMN120400	12	12,7	4,76	-	
RNMN120600	12	12,7	6,35	-	S02020 S05020 S10020
RNMN120700	12	12,7	7,94	-	
RNMN150700	15	15,875	7,94	-	
RNMN160700	16	16	7,94	-	
RNMN190100	19	19,05	7,94	-	
RNMN200700	20	20	7,94	-	
RNMN201000	20	20	10	-	
RNMN250600	25	25,4	6,35	-	
RNMN250700	25	25,4	7,94	-	
RNMN251000	25	25,4	10	-	
RNMN251200	25	25,4	12	-	

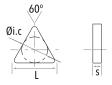
NBS PCBN SOLID INSERTS

SQUARE

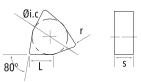


Туре		Dimensions (mm)			
ISO	L	φi.c	S	r	Edge Preparation
SCGN090304	9	9,525	3,18	0,4	
SCGN090308	9	9,525	3,18	0,8	
SCGN090312	9	9,525	3,18	1,2	T01020
SCGN090404	9	9,525	4,76	0,4	S10020 S20020
SCGN090408	9	9,525	4,76	0,8	
SCGN090412	9	9,525	4,76	1,2	

SQUARE


Туре	Dimensions (mm)			Edus Droporation	
ISO	L	φi.c	s	r	Edge Preparation
SNMN090304	9	9,525	3,18	0,4	
SNMN090308	9	9,525	3,18	0,8	
SNMN090312	9	9,525	3,18	1,2	
SNMN090404	9	9,525	4,76	0,4	- S02020 S05020 S10020
SNMN090408	9	9,525	4,76	0,8	
SNMN090412	9	9,525	4,76	1,2	
SNMN120404	12	12,7	4,76	0,4	
SNMN120408	12	12,7	4,76	0,8	
SNMN120712	12	12,7	7,94	1,2	
SNMN150704	15	15,875	7,94	0,4	
SNMN150708	15	15,875	7,94	0,8	
SNMN201020	20	20	10	2,0	
SNMN201024	20	20	10	2,4	

TRIANGULAR 60°



Туре	Dimensions (mm)				Edua Busanstian
ISO	L	φi.c	S	r	Edge Preparation
TNGN110304	11	6,35	3,18	0,4	502020 \$10020
TNGN110308	11	6,35	3,18	0,8	
TNGN110312	11	6,35	3,18	1,2	
TNGN160404	16	9,25	4,76	0,4	
TNGN160408	16	9,25	4,76	0,8	
TNGN160412	16	9,25	4,76	1,2	

TRIGON 80°

Туре	Dimensions (mm)			Edge Dreverstien	
ISO	L	φi.c	S	r	Edge Preparation
WNMN080404	8	12,7	4,76	0,4	
WNMN080408	8	12,7	4,76	0,8	S02020
WNMN080412	8	12,7	4,76	1,2	
WNMN080604	8	12,7	6,35	0,4	
WNMN080608	8	12,7	6,35	0,8	
WNMN080612	8	12,7	6,35	1,2	

N

C N M A 12 04 08 15 NCD 810

ISO Turning Insert Codes

No. of Cutting Edges

PCD Inserts

Grade

LUMINIUM

INSERT SHAPE

С	800
D	55°

K	55°

Ī		

S

т

NICHE INSERT

_	Refers to a Negative Insert
+	Refers to
	a Positive

Insert

INSERT THICKNESS

IIASEKI	ITHICKINES
CODE	INSCRIBED RADIUS DIAMETER (INCH)
1.5	0.094
2	0.125
2.5	0.156
3	0.187
4	0.250
4.5	0.266
5	0.313
6	0.375

INSCRIBED CIRCLE

DIAMETER				
CODE	INSCRIBED RADIUS DIAMETER (INCH)			
2	0.250			
3	0.375			
4	0.500			
5	0.625			
6	0.750			
8	1.000			

NO. OF CUTTING EDGES

CODE	NUMBER	TYPE
-	Single Edge	0
2	Double Edge	0
3	Three Edges	
4	Four Edges	0

CHIPBREAKER & CLAMPING

O	CITII DILLARLIR & CLAIMI ING				
CODE	WITH/ WITHOUT HOLE	INSERT SECTON			
N	Without				
В	With	>65°			
С	With	>65°			
Α	With				
w	With	≤65°			
Q	With	≤65°			

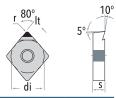
NON-FERROUS MACHINING

When it comes to non-ferrous materials processing such as aluminum alloys, titanium, carbon fiber, reinforced plastics, ceramic and other non-metallic materials, PCD (polycrystalline cubic diamond) is an advanced material that significantly reduces machining time and provides excellent surface quality due to excellent abrasion resistance and low coefficient of friction. High grinding efficiency, low grinding force: Less

heat will be generated by the hole in the grinding process. This can decrease or prevent burns and cracks on the surface of the workpiece, and decrease the equipment's wear and energy consumption. High wear resistance: Diamond grinding tools' change in dimension is small. This can lead to good grinding quality and high grinding precision. PCD has a high thermal conductivity and good heat dissipation from

the cutting area. PCD possesses the highest flexural strength of all cutting materials. PCD is very well adapted for aluminum machining with high Si content or other abrasive filler materials. Temperature hardness up to approx. 650 °C. Long lifespan, long dressing period: This can greatly increase work efficiency and decrease the product's labor intensity. Low comprehensive cost: The processing cost of each workpiece is lower.

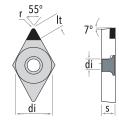
PCD has high hardness, excellent abrasion resistance, thermal conductivity, low coefficient of friction, suitable for cutting in non-ferrous metal and their alloys (such as: Cu, Al, Mg, etc.), non-metallic materials, and composite materials (such as: MMC, ceramics and reinforced plastics.



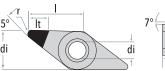
RHOMBIC 80°

Specification	Dimension			
	di	S	r	l,
CNMA120404	12,7	4,76	0,4	3,9
CNMA120408	12,7	4,76	0,8	3,6
CNMA120412	12,7	4,76	1,2	3,4

RHOMBIC 80°


Constituent	Dimension			
Specification	di	S	r	l,
CCMT060202	6,35	2,38	0,2	3,1
CCMT060204	6,35	2,38	0,4	3,0
CCMT060208	6,35	2,38	0,8	2,8
CCMT09T302	9,52	3,97	0,2	4,5
CCMT09T304	9,52	3,97	0,4	4,4
ССМТ09Т308	9,52	3,97	0,8	4,2

RHOMBIC 55°



Carations	Dimension			
Specification	di	S	r	l,
DCMT 070201	6,35	2,38	0,1	3
DCMT 070202	6,35	2,38	0,2	3
DCMT 070204	6,35	2,38	0,4	2,8
DCMT 11T301	9,52	3,97	0,1	3,8
DCMT11T302	9,52	3,97	0,2	3,7
DCMT11T304	9,52	3,97	0,4	3,6
DCMT11T308	9,52	3,97	0,8	3,3

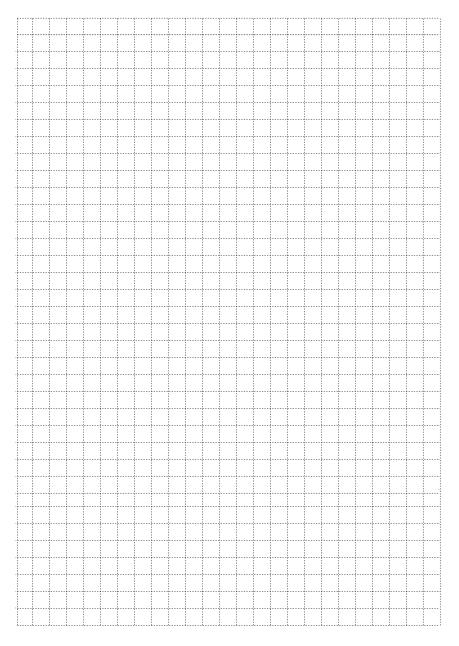
RHOMBIC 35°

Constitution	Dimension			
Specification	di	S	r	l,
VCMT 110302	6,35	3,18	0,2	3,2
VCMT 110304	6,35	3,18	0,4	3
VCMT 110308	6,35	3,18	0,8	2,8
VCMT 160404	9,52	4,76	0,4	3,8
VCMT 160408	9,52	4,76	0,8	3,6
VCMT 160412	9,52	4,76	1,2	3,4

TRIANGULAR 60°

Specification	Dimension			
	di	S	r	I,
TPGT090202	5,56	2,38	0,2	3,1
TPGT090204	5,56	2,38	0,4	3
TPGT110302	6,35	3,18	0,2	3,4
TPGT110304	6,35	3,18	0,4	3,8

TRIANGULAR 60°



Specification	Dimension			
	di	S		Į,
TCMT080202	4,76	2,38	0,2	3
TCMT080204	4,76	2,38	0,4	2,8
TCMT090202	5,56	2,38	0,2	3
TCMT090204	5,56	2,38	0,4	2,8
TCMT110202	6,35	2,38	0,2	4
TCMT110204	6,35	2,38	0,4	3,8
TCMT110208	6,35	2,38	0,8	3,6
TCMT110302	6,35	3,18	0,1	3,2
TCMT110304	6,35	3,18	0,2	3
TCMT110308	6,35	3,18	0,4	2,8

MEMO

ADDRESS

ROOM 1601, NO. 399 MINHE ROAD, ZHENHAI, NINGBO CHINA, 315202

GET IN TOUCH

PHONE: +86 574 8659 2189 FAX: +86 574 8659 3892

NTOOLS2017@GMAIL.COM WWW.NICHE-TOOL.COM